Voyager In Space

 

Galaxy Banner Image
VOYAGER

Voyager LECP Data Analysis Handbook

 

Instrument Modeling Reports

 

An Analysis of the Performance of the Magnetic Deflection System
 in the Voyager Low Energy Charged Particle Experiment

 

by Sheela Shodhan

 

E.3 FDMOD1

 

*******************************************************************************
      SUBROUTINE FDMOD(X,Y,Z,BX,BY,BZ)                                       
* PURPOSE : THIS ROUTINE CALCULATES THE COMPONENTS OF THE MAGNETIC            *
*         FIELD, Bx,By,Bz AT THE GIVEN POINT (X,Y,Z) IN SPACE.                *
*         THIS FIELD IS PRODUCED BY TWO TILTED MAGNETS- ONE ROTATED           *
*         CLOCKWISE, THE OTHER ROTATED COUNTER-CLOCKWISE BY THE SAME          *
*         AMOUNT.                                                             *
*         A FIELD DUE TO A MAGNET LYING IN THE XY PLANE IS GIVEN BY:          *
*                                                                             *
*              B(r) = 1   1  M(r') . n  (r - r')   da'                        *
*                    ---  1             --------3                             *
*                     c   1             |r - r'|                              *
*                       integral                                              *
*           WHERE M(r') IS THE MAGNETISATION NORMAL TO THE SURFACE OF MAGNET. *                             
*          IN THIS ROUTINE, THE MAGNETISATION OF THE MAGNET IS LINEARLY       *     
*          FALLING. SO IT HAS THE FORM: M(r') = A(x'-x ) + B(y'- y ) + M      *
*                                                     o           o     o     *
*        THEN, SUBSTITUTING THIS FORM IN THE ABOVE EXPRESSION YIELDS THE      *
*        COMPONENTS OF THE MAGNETIC FIELD AT THE POINT (x,y,z).               *
*        HOWEVER, SINCE THE FIELD HERE IS PRODUCED BY THE TWO TILTED MAGNETS, *
*        THIS POINT (x,y,z) IN THE EXPERIMENTAL SYSTEM HAS TO BE EXPRESSED    *
*        IN THE COORDINATE SYSTEM THAT IS CENTRED AT EACH OF THE MAGNETS.     *
*        THEREFORE, THIS POINT IS TRANSLATED AND ROTATED APPROPRIATELY INTO   *
*        THE COORDINATE SYSTEMS OF EACH OF THE TWO MAGNETS.                   *
*        AFTER, THE FIELD DUE TO EACH OF THE MAGNETS IS COMPUTED, THE TOTAL   *
*        FIELD IS DETERMINED BY ADDING IT UP DUE TO THE PRINCIPLE OF          *
*        SUPERPOSITION.                                                       *
*          THE RELEVANT PARAMETERS:AMOUNT OF TRANSLATION,ROTATION, AND THE    *
*        VALUES OF THE MAGNETISATION CONSTANTS A,B,AND M   ARE INCLUDED IN    *
*                                                       o                     *
*        IN THE FILE FDMOD1.CMN.                                              *
*                                                                             *
*                                                                             *
* VARIABLES:                                                                  *
* INPUT:                                                                      *
*  X,Y,Z    : COORDINATES OF A POINT WHERE THE FIELD IS REQUIRED.             *
* OUTPUT:                                                                     *
*  BX,BY,BZ : TOTAL FIELD COMPONENTS AT A POINT (X,Y,Z).                      *
* OTHERS:                                                                     *
*  ANG : ANGLE IN RADIANS BY WHICH THE MAGNETS ARE ROTATED.                   *
*  BX1,BX2,BXX1,BXX2,BXX3,BXX4,BXX5 : TEMPORARIES WHICH ARE USED TO STORE     *
*                                    THE X-COMPONENT OF THE MAGNETIC FIELD.   *
*  BY1,BY2,BYY1,BYY2,BYY3,BYY4,BYY5 : TEMPORARIES WHICH ARE USED TO STORE     *
*                                    THE Y-COMPONENT OF THE MAGNETIC FIELD.   *
*  BZ1,BZ2,BZZ1,BZZ2,BZZ3,BZZ4 : TEMPORARIES WHICH ARE USED TO STORE          *
*                               THE Z-COMPONENT OF THE MAGNETIC FIELD.        *
*  XL,YL,ZL : ARRAYS WHOSE ELEMENTS  CONTAIN THE AMOUNT BY WHICH THE          *
*            CORRESPONDING PIECE OF THE MAGNET IS TRANSLATED.                 *
*******************************************************************************
      IMPLICIT NONE
      REAL*8 XO,YO,ZO,X,Y,Z,Y1,Z1,Y2,Z2,YP,YN,XP,XN
      REAL*8 BXX,BYY,BZZ,BX1,BX2,BY1,BY2,BZ1,BZ2      
      REAL*8 BX,BY,BZ
      REAL*8 BXX1,BXX2,BXX3,BXX4,BXX5,BYY1,BYY2,BYY3,BYY4,BYY5
      REAL*8 BZZ1,BZZ2,BZZ3,BZZ4
      REAL*8 SQS,BS,COXZ,COYZ,DEN,NUM,TEMP,X1,X2
      INTEGER I,LX,LY
      INCLUDE 'FDMOD1.CMN'
C     INITIALIZATION OF THE FIELD      
      BX=0.0D0
      BY=0.0D0 
      BZ=0.0D0
      DO LX=1,NX1
         DO LY=1,NY1
C           THE TRANSLATION OF THE COORDINATE SYSTEM
         
            XO=X-XL(LX)
            YO=Y+YL(LY)
            ZO=Z+ZL(LY)
C           THE ROTATION OF THE COORDINATE SYSTEM FOR LEFT MAGNET
            X1=XO
            Y1=YO*DCOS(ANG)-ZO*DSIN(ANG)
            Z1=YO*DSIN(ANG)+ZO*DCOS(ANG)
        
C           THE ROTATION OF THE COORDINATE SYSTEM FOR RIGHT MAGNET
            X2=XO
            Y2=YO*DCOS(ANG)+(ZO-SEPTS(LY))*DSIN(ANG)
            Z2=-YO*DSIN(ANG)+(ZO-SEPTS(LY))*DCOS(ANG)
            YP=Y1+WIDTHS(LY)
            YN=Y1-WIDTHS(LY)
            XP=XO+LENGTHS(LX)
            XN=XO-LENGTHS(LX)
      BZ1=BZZ(YP,XP,Z1)-BZZ(YP,XN,Z1)-BZZ(YN,XP,Z1)+BZZ(YN,XN,Z1)
      BY1=BYY(YP,XN,Z1)-BYY(YP,XP,Z1)-BYY(YN,XN,Z1)+BYY(YN,XP,Z1)
      BX1=BXX(YP,XN,Z1)-BXX(YP,XP,Z1)-BXX(YN,XN,Z1)+BXX(YN,XP,Z1)
d     print *,'bx1 ',bx1,' by1 ',by1,' bz1 ',bz1
c           to calculate the field due to  linear
c           correction in the magnetisation of the magnet.
       BXX1 = B0 * ( (2.0d0*SQS(XN,Z1,Y1)) - (2.0d0*SQS(XP,Z1,Y1))
     1                     + SQS(XP,Z1,YN) + SQS(XP,Z1,YP)
     1                     - SQS(XN,Z1,YN) - SQS(XN,Z1,YP)  )
            BXX2 =( (2.0d0 * B0 * (Y1 - Y0)) *
     1                (BXX(Y1,XP,Z1) - BXX(Y1,XN,Z1)) )
     1             + (( B0 * (Y1 - Y0) ) *
     1                ( BXX(YP,XN,Z1) + BXX(YN,XN,Z1)
     1                  - BXX(YP,XP,Z1) - BXX(YN,XP,Z1) ))
            BXX3 = (( (A0/2.0d0) * (X0 - X1)) *
     1              (BXX(YP,XP,Z1)
     1              + BXX(YP,XN,Z1)
     1              - BXX(YN,XP,Z1)
     1              - BXX(YN,XN,Z1) ))
     1             + (( A0*(X0-X1) ) *
     1              ( BXX(YN,X1,Z1)
     1              - BXX(YP,X1,Z1) ))
            NUM = BS(YN,XP,Z1)*BS(YP,X1,Z1)*BS(YN,XN,Z1)
     1             * BS(YP,X1,Z1)
            DEN = BS(YN,X1,Z1)*BS(YP,XP,Z1)*BS(YN,X1,Z1)
     1             * BS(YP,XN,Z1)
            TEMP = NUM/DEN
            BXX3 = BXX3 + ( ((A0*(X0-X1))/2.0) *dlog(TEMP) )
            BXX4 = ( (A0 * (Y1 - WIDTHS(LY))) *
     1               (BXX(XP,YN,Z1) + BXX(XN,YN,Z1)
     1              -BXX(X1,YN,Z1) - BXX(X1,YN,Z1)) )
     1             + ( (A0 * (Y1 + WIDTHS(LY))) *
     1                (BXX(X1,YP,Z1) + BXX(X1,YP,Z1)
     1                -BXX(XP,YP,Z1) - BXX(XN,YP,Z1)) )

            COXZ = BZZ(X1,YN,Z1) + BZZ(X1,YN,Z1) + BZZ(XP,YP,Z1)
     1             + BZZ(XN,YP,Z1) - BZZ(XN,YN,Z1)
     1             - BZZ(XP,YN,Z1) - BZZ(X1,YP,Z1) 
     1             - BZZ(X1,YP,Z1)
            BXX5 = A0 * Z1 * COXZ
d            print *,'due to 1 magnet'
d            print *,'BXX1',BXX1,'BXX2',BXX2,'BXX3',BXX3
d            print *,'BXX4',BXX4,'BXX5',BXX5
d            print *,' '             
  
c              to compute the total x- field
            BX1 = BX1 + BXX1 + BXX2 + BXX3 + BXX4 + BXX5
d            print *,'due to 1 magnet'
d            print *,'BX1',BX1
c              to compute the y-component of the field
        BYY1 = A0 * ( (2.0d0*SQS(YN,Z1,X1)) - (2.0d0*SQS(YP,Z1,X1))
     1                     + SQS(YP,Z1,XN) + SQS(YP,Z1,XP)
     1                     - SQS(YN,Z1,XN) - SQS(YN,Z1,XP)  )
            BYY2 =( (2.0d0 * A0 * (X1 - X0)) *
     1                (BXX(X1,YP,Z1) - BXX(X1,YN,Z1)) )
     1             + (( A0 * (X1 - X0) ) *
     1                ( BXX(XP,YN,Z1) + BXX(XN,YN,Z1)
     1                  - BXX(XP,YP,Z1) - BXX(XN,YP,Z1) ))
            BYY3 = (( (B0/2.0d0) * (Y0 - Y1)) *
     1              ( BXX(XP,YP,Z1)
     1              + BXX(XP,YN,Z1)
     1              - BXX(XN,YP,Z1) 
     1              - BXX(XN,YN,Z1) ))
     1             + (( B0*(Y0-Y1) ) *
     1              ( BXX(XN,Y1,Z1) 
     1              - BXX(XP,Y1,Z1) ))
            NUM = BS(XN,YP,Z1)*BS(XN,YN,Z1)*BS(XP,Y1,Z1)
     1            * BS(XP,Y1,Z1)
            DEN = BS(XP,YP,Z1)*BS(XP,YN,Z1)*BS(XN,Y1,Z1)
     1            * BS(XN,Y1,Z1)
            TEMP = NUM/DEN
            
           BYY3 = BYY3 + ( ((B0*(Y0-Y1))/2.0d0)*dlog(TEMP) )
            BYY4 = ( (B0 * (X1 - LENGTHS(LX))) *
     1               (BXX(YP,XN,Z1) + BXX(YN,XN,Z1)
     1              -BXX(Y1,XN,Z1) - BXX(Y1,XN,Z1)) )
     1             + ( (B0 * (X1 + LENGTHS(LX))) *
     1                (BXX(Y1,XP,Z1) + BXX(Y1,XP,Z1)
     1                -BXX(YP,XP,Z1) - BXX(YN,XP,Z1)) )

            COYZ = BZZ(Y1,XN,Z1) + BZZ(Y1,XN,Z1) + BZZ(YP,XP,Z1)
     1             + BZZ(YN,XP,Z1) - BZZ(YN,XN,Z1)
     1             - BZZ(YP,XN,Z1) - BZZ(Y1,XP,Z1) 
     1             - BZZ(Y1,XP,Z1)
            BYY5 = B0 * Z1 * COYZ
c             to compute the total y-field
            BY1 = BY1 + BYY1 + BYY2 + BYY3 + BYY4 + BYY5
d            print *,'due to 1 magnet'
d            print *,'BY1',BY1,'BYY1',BYY1,'BYY2',BYY2
d            print *,'BYY3',BYY3,'BYY4',BYY4,'BYY5',BYY5
d            print *,' '
 
c            next, to compute the z-component of the field
            BZZ1 = ( (2.0d0*A0*Z1) * 
     1              (BXX(YN,X1,Z1) - BXX(YP,X1,Z1)) )
     1             + ( (A0*Z1) *
     1               (BXX(YP,XP,Z1) + BXX(YP,XN,Z1)
     1               - BXX(YN,XP,Z1) - BXX(YN,XN,Z1)) )
           BZZ2 = A0 * (X1 - X0) * COXZ
           BZZ3 = ( (B0 * Z1) *
     1              ( BXX(XN,Y1,Z1)
     1              - BXX(XP,Y1,Z1) )  )
     1             + (  ((B0 * Z1)/2.0d0) *
     1                (BXX(XP,YP,Z1)
     1                 + BXX(XP,YN,Z1)
     1                 - BXX(XN,YP,Z1)
     1                -BXX(XN,YN,Z1) )  )
           NUM = BS(XP,Y1,Z1)*BS(XP,Y1,Z1)*BS(XN,YP,Z1)
     1            * BS(XN,YN,Z1)
           DEN = BS(XP,YP,Z1)*BS(XN,Y1,Z1)*BS(XN,Y1,Z1)
     1            * BS(XP,YN,Z1)
           TEMP = dlog(NUM/DEN)
           TEMP = ((B0*Z1)/2.0d0) * TEMP
           BZZ3 = BZZ3 + TEMP

           BZZ4 = (B0* (Y0-Y1)) *
     1             (BZZ(XN,YN,Z1) + BZZ(XP,Y1,Z1)
     1             + BZZ(XP,Y1,Z1) + BZZ(XN,YP,Z1)
     1             - BZZ(XN,Y1,Z1) - BZZ(XN,Y1,Z1)
     1             - BZZ(XP,YN,Z1) - BZZ(XP,YP,Z1))
c              to compute the total z-field
           BZ1 = BZ1 + BZZ1 + BZZ2 + BZZ3 + BZZ4
 
d           print *,'due to 1 magnet'
d           print *,'BZ1',BZ1,'BZZ1',BZZ1,'BZZ2',BZZ2
d           print *,'BZZ3',BZZ3,'BZZ4',BZZ4 
d           print *,' '
c           for the 2 magnet
            YP=Y2+WIDTHS(LY)
            YN=Y2-WIDTHS(LY)
      BZ2=BZZ(YP,XP,Z2)-BZZ(YP,XN,Z2)-BZZ(YN,XP,Z2)+BZZ(YN,XN,Z2)
      BY2=BYY(YP,XN,Z2)-BYY(YP,XP,Z2)-BYY(YN,XN,Z2)+BYY(YN,XP,Z2)
      BX2=BXX(YP,XN,Z2)-BXX(YP,XP,Z2)-BXX(YN,XN,Z2)+BXX(YN,XP,Z2)
d     print *,' bx2 ',bx2,' by2 ',by2,' bz2 ',bz2
c
c            add the correction due to the linear magnetization
       BXX1 = B0 * ( (2.0d0*SQS(XN,Z2,Y2)) - (2.0d0*SQS(XP,Z2,Y2))
     1                     + SQS(XP,Z2,YN) + SQS(XP,Z2,YP)
     1                     - SQS(XN,Z2,YN) - SQS(XN,Z2,YP)  )
            BXX2 =( (2.0d0 * B0 * (Y2 - Y0)) *
     1                (BXX(Y2,XP,Z2) - BXX(Y2,XN,Z2)) )
     1             + (( B0 * (Y2 - Y0) ) *
     1                ( BXX(YP,XN,Z2) + BXX(YN,XN,Z2)
     1                  - BXX(YP,XP,Z2) - BXX(YN,XP,Z2) ))

            BXX3 = (( (A0/2.0d0) * (X0 - X2)) *
     1              (BXX(YP,XP,Z2)
     1              + BXX(YP,XN,Z2)
     1              - BXX(YN,XP,Z2)
     1              - BXX(YN,XN,Z2) ))
     1             + (( A0*(X0-X2) ) *
     1              ( BXX(YN,X2,Z2)
     1              - BXX(YP,X2,Z2) ))
            NUM = BS(YN,XP,Z2)*BS(YP,X2,Z2)*BS(YN,XN,Z2)
     1             * BS(YP,X2,Z2)
            DEN = BS(YN,X2,Z2)*BS(YP,XP,Z2)*BS(YN,X2,Z2)
     1             * BS(YP,XN,Z2)
            TEMP = NUM/DEN
            BXX3 = BXX3 + ( ((A0*(X0-X2))/2.0d0) *dlog(TEMP) )
            BXX4 = ( (A0 * (Y2 - WIDTHS(LY))) *
     1               (BXX(XP,YN,Z2) + BXX(XN,YN,Z2)
     1              -BXX(X2,YN,Z2) - BXX(X2,YN,Z2)) )
     1             + ( (A0 * (Y2 + WIDTHS(LY))) *
     1                (BXX(X2,YP,Z2) + BXX(X2,YP,Z2)
     1                -BXX(XP,YP,Z2) - BXX(XN,YP,Z2)) )

            COXZ = BZZ(X2,YN,Z2) + BZZ(X2,YN,Z2) + BZZ(XP,YP,Z2)
     1             + BZZ(XN,YP,Z2) - BZZ(XN,YN,Z2)
     1             - BZZ(XP,YN,Z2) - BZZ(X2,YP,Z2) 
     1             - BZZ(X2,YP,Z2)
            BXX5 = A0 * Z2 * COXZ
c              to compute the total x- field
            BX2 = BX2 + BXX1 + BXX2 + BXX3 + BXX4 + BXX5
d            print *,'due to 2 magnet'
d            print *,'BX2',BX2,'BXX1',BXX1,'BXX2',BXX2
d            print *,'BXX3',BXX3,'BXX4',BXX4
d            print *,' '
c              to compute the y-component of the field
       BYY1 = A0 * ( (2.0d0*SQS(YN,Z2,X2)) - (2.0d0*SQS(YP,Z2,X2))
     1                     + SQS(YP,Z2,XN) + SQS(YP,Z2,XP)
     1                     - SQS(YN,Z2,XN) - SQS(YN,Z2,XP)  )
            BYY2 =( (2.0d0 * A0 * (X2 - X0)) *
     1                (BXX(X2,YP,Z2) - BXX(X2,YN,Z2)) )
     1             + (( A0 * (X2 - X0) ) *
     1                ( BXX(XP,YN,Z2) + BXX(XN,YN,Z2)
     1                  - BXX(XP,YP,Z2) - BXX(XN,YP,Z2) ))
            BYY3 = (( (B0/2.0d0) * (Y0 - Y2)) *
     1              ( BXX(XP,YP,Z2)
     1              + BXX(XP,YN,Z2)
     1              - BXX(XN,YP,Z2) 
     1              - BXX(XN,YN,Z2) ))
     1             + (( B0*(Y0-Y2) ) *
     1              ( BXX(XN,Y2,Z2) 
     1              - BXX(XP,Y2,Z2) ))
            NUM = BS(XN,YP,Z2)*BS(XN,YN,Z2)*BS(XP,Y2,Z2)
     1             * BS(XP,Y2,Z2)
            DEN = BS(XP,YP,Z2)*BS(XP,YN,Z2)*BS(XN,Y2,Z2)
     1             * BS(XN,Y2,Z2)
            TEMP = NUM/DEN
            BYY3 = BYY3 + ( ((B0*(Y0-Y2))/2.0)*dlog(TEMP) )
            BYY4 = ( (B0 * (X2 - LENGTHS(LX))) *
     1               (BXX(YP,XN,Z2) + BXX(YN,XN,Z2)
     1              -BXX(Y2,XN,Z2) - BXX(Y2,XN,Z2)) )
     1             + ( (B0 * (X2 + LENGTHS(LX))) *
     1                (BXX(Y2,XP,Z2) + BXX(Y2,XP,Z2)
     1                -BXX(YP,XP,Z2) - BXX(YN,XP,Z2)) )

            COYZ = BZZ(Y2,XN,Z2) + BZZ(Y2,XN,Z2) + BZZ(YP,XP,Z2)
     1             + BZZ(YN,XP,Z2) - BZZ(YN,XN,Z2)
     1             - BZZ(YP,XN,Z2) - BZZ(Y2,XP,Z2) 
     1             - BZZ(Y2,XP,Z2)
            BYY5 = B0 * Z2 * COYZ
c             to compute the total y-field
            BY2 = BY2 + BYY1 + BYY2 + BYY3 + BYY4 + BYY5
d            print *,'due to 2 magnet'
d            print *,'BY2',BY2,'BYY1',BYY1,'BYY2',BYY2
d            print *,'BYY3',BYY3,'BYY4',BYY4
d            print *,' '
c            next, to compute the z-component of the field
            BZZ1 = ( (2.0d0*A0*Z2) * 
     1              (BXX(YN,X2,Z2) - BXX(YP,X2,Z2)) )
     1             + ( (A0*Z2) *
     1               (BXX(YP,XP,Z2) + BXX(YP,XN,Z2)
     1               - BXX(YN,XP,Z2) - BXX(YN,XN,Z2)) )
           BZZ2 = A0 * (X2 - X0) * COXZ
           BZZ3 = ( (B0 * Z2) *
     1              ( BXX(XN,Y2,Z2)
     1              - BXX(XP,Y2,Z2) )  )
     1             + (  ((B0 * Z2)/2.0d0) *
     1                (BXX(XP,YP,Z2)
     1                 + BXX(XP,YN,Z2)
     1                 - BXX(XN,YP,Z2)
     1                -BXX(XN,YN,Z2) )  )
           NUM = BS(XP,Y2,Z2)*BS(XP,Y2,Z2)*BS(XN,YP,Z2)
     1            * BS(XN,YN,Z2)
           DEN = BS(XP,YP,Z2)*BS(XN,Y2,Z2)*BS(XN,Y2,Z2)
     1            * BS(XP,YN,Z2)
           TEMP = dlog(NUM/DEN)
           TEMP = ((B0*Z2)/2.0d0) * TEMP
           BZZ3 = BZZ3 + TEMP
           BZZ4 = (B0* (Y0-Y2)) *
     1             (BZZ(XN,YN,Z2) + BZZ(XP,Y2,Z2)
     1             + BZZ(XP,Y2,Z2) + BZZ(XN,YP,Z2)
     1             - BZZ(XN,Y2,Z2) - BZZ(XN,Y2,Z2)
     1             - BZZ(XP,YN,Z2) - BZZ(XP,YP,Z2))
c              to compute the total z-field
           BZ2 = BZ2 + BZZ1 + BZZ2 + BZZ3 + BZZ4
 
d           print *,'due to 2 magnet'
d           print *,'BZ2',BZ2,'BZZ1',BZZ1,'BZZ2',BZZ2
d           print *,'BZZ3',BZZ3,'BZZ4',BZZ4
d           print *,' '
           BZ = BZ + (MAGS(LX,LY) * (BZ2-BZ1))
           BY = BY + (MAGS(LX,LY) * (BY2-BY1))
           BX = BX + (MAGS(LX,LY) * (BX2-BX1))
         
D           PRINT *,'MAGS(',LX,LY,')',MAGS(LX,LY)
D           PRINT *,' X ',X,' Y ',Y,' Z ',Z
D           PRINT *,'BZ1:',BZ1,' BZ2 ',BZ2,' BZ ',BZ
D           PRINT *,'BY1:',BY1,' BY2 ',BY2,' BY ',BY
D           PRINT *,'BX1:',BX1,' BX2 ',BX2,' BX ',BX
          END DO
       END DO
       RETURN
       END
C---------------------------------------------------------------------
      REAL*8 FUNCTION BZZ(P1,P2,P3)
      REAL*8 TEMP,P1,P2,P3
   
      IF (P3 .EQ. 0.0D0) THEN 
        TEMP = PI/2.0D0
      ELSE
        TEMP = (P1 * P2)/(P3 * DSQRT(P1**2+P2**2+P3**2))
        TEMP = DATAN(TEMP)
      END IF
      BZZ=TEMP
      RETURN
      END 
C---------------------------------------------------------------------
c        the function SQS which computes the 
c          square root of the sum of the squares of the input
c          numbers.
          REAL*8 function SQS(P1,P2,P3)
          REAL*8 P1,P2,P3
          SQS = DSQRT( (P1*P1) + (P2*P2) + (P3*P3) )
          return
          end
C---------------------------------------------------------------------
c         this is the function that calculates 
c         (p1 - DSQRT(p1*p1 + p2*p2 + p3*p3))
          REAL*8 function BS(P1,P2,P3)
          REAL*8 P1,P2,P3,TEMP
          TEMP = DSQRT((P1*P1) + (P2*P2) + (P3*P3))
          BS = P1 - TEMP
          return
          end
C---------------------------------------------------------------------
      REAL*8 FUNCTION BXX(P1,P2,P3)
      REAL*8 TEMP,P1,P2,P3
      
      TEMP=DSQRT(P1**2+P2**2+P3**2)
      
      BXX=DLOG(TEMP+P1)
      RETURN
      END
C--------------------------------------------------------------------
      REAL*8 FUNCTION BYY(P1,P2,P3)
      REAL*8 TEMP,P1,P2,P3
      TEMP=DSQRT(P1**2+P2**2+P3**2)
      
      BYY=DLOG(TEMP+P2)
      RETURN
      END
C--------------------------------------------------------------------
C--------------------------------------------------------------------

 

 

Return to thesis table of contents. 

Return to Voyager LECP Data Analysis Handbook Table of Contents.
Return to Fundamental Technologies Home Page.


Updated 8/9/19, Cameron Crane

VOYAGER 1 ELAPSED TIME

--:--:--:--
Days: Hours: Minutes: Seconds

*Since official launch
September 5, 1977, 12:56:00:00 UTC

VOYAGER 2 ELAPSED TIME

--:--:--:--
Days: Hours: Minutes: Seconds

*Since official launch
August 20, 1977, 14:29:00:00 UTC

QUICK FACTS

Manufacturer: Voyagers 1 and 2 were built in the Jet Propulsion Laboratory in Southern California.

Mission Duration: 40+ years have elapsed for both Voyager 1 and Voyager 2 (both are ongoing).

Destination: Their original destinations were Saturn and Jupiter. Their current destination is interstellar space.